Use vscode to login
- Open a vscode interface, press
Ctrl+Shift+P
(Command+Shift+P
for Mac) to open the search bar. - In the search bar, search
remote ssh
, then click onnew SSH connection
- Type
<cwl-account>@sockeye.ubc.ca
and save the ssh config - Connect to sockeye with your CWL password and DUO verification.
Install and load software
See the available software:
1
module avail
Load software:
1
2
3
module load gcc
module load cuda
module load miniconda3
Create your conda environment
In a terminal,
1
2
3
module load miniconda3
module load git
source ~/.bashrc
Note that some packages may require git, so also load git
Create a conda environment from yml file:
1
conda env create -f environment.yml
It is the first time to activate conda env under your account,
1
conda init bash
Then open a new terminal,
1
conda activate <your conda env>
Run a GPU job
Create a bash file called run_job.sh:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#!/bin/bash
#SBATCH --job-name=jobname
#SBATCH --account=alloc-code-gpu
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=12
#SBATCH --mem=64G
#SBATCH --time=72:00:00
#SBATCH --gpus-per-node=2
#SBATCH --output=output.txt
#SBATCH --error=error.txt
#SBATCH --mail-user=your.name@ubc.ca
#SBATCH --mail-type=ALL
module load gcc
module load cuda
module load <software_package_1>
module load <software_package_2>
cd $SLURM_SUBMIT_DIR
<gpu_executable>
Submit run_job.sh by:
1
sbatch run_job.sh
You can check the running or pending jobs by running this command:
1
2
squeue -u <your_CWL> -t RUNNING
squeue -u <your_CWL> -t PENDING
Data Transfer
To download the data from sockeye, use the following command:
1
scp -r cwl@sockeye.arc.ubc.ca:path local_pat
Reference
- Official Documentation https://confluence.it.ubc.ca/display/UARC/GPU+Jobs+in+Detail